Chapitre 1

Séries Entières

Les séries entières sont une classe importante des séries de fonctions.

Définitions et Rayons de convergence 1.1

1.1.1 **Définitions**

Définition 1.1.1 On appelle **série entière** toute série d'application $\sum f_n$ avec f_n : $\mathbb{C} \longrightarrow \mathbb{C} \ z \longmapsto a_n z^n \ où \ a_n \ est \ une \ suite \ de \ nombres \ complexes.$

Dans toute la suite la série entière sera notée $\sum a_n z^n$; la suite a_n est appelée **la suite** des cœfficients de la série entière.

Comme pour les séries de fonctions on cherche l'ensemble

$$\Delta = \left\{ z \in \mathbb{C} : \sum a_n z^n \text{ converge} \right\}$$

qu'on appelle domaine de convergence de la série entière.

Exemple 1.1.1 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ Posons $f_n(x) = \frac{x^n}{n!}$ et appliquons le critère d'Alembert. $\lim_{n \to +\infty} \left| \frac{f_{n+1}}{f_n} \right| = \lim_{n \to +\infty} \left| \frac{x}{n+1} \right| = 0$. Donc la série entière est absolument convergente pour tout $x \in \mathbb{R}$; donc $\Delta = \mathbb{R}$.

Exemple 1.1.2 $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

Posons $f_n(x) = \frac{x^n}{n^2}$ et appliquons le critère d'Alembert. $\lim_{n \to +\infty} \left| \frac{f_{n+1}}{f_n} \right| = \lim_{n \to +\infty} \left| \left(\frac{n}{n+1} \right)^2 x \right| = |x|. \text{ Donc la série entière est absolument convergente pour tout } |x| < 1; \text{ et si } |x| > 1 \text{ la érie diverge.}$

Dans le cas où |x|=1 on a $f_n(x)=|\frac{x^n}{n^2}|=\frac{1}{n^2}$. La série $\sum_{n=1}^{\infty}\frac{x^n}{n^2}$ est absolument convergente pour tout $x\in[-1,1]$; et alors $\Delta=[-1,1]$.

Définition 1.1.2 On appelle série entière complexe de la variable réelle toute série d'application $\sum a_n t^n$ de \mathbb{R} dans \mathbb{C} où a_n est une suite de nombres complexes.

On appelle série entière réelle de la variable réelle toute série d'application $\sum a_n t^n$ de \mathbb{R} dans \mathbb{R} où a_n est une suite de nombres rélles.

Définition 1.1.3 $\sum a_n z^n$ et $\sum b_n z^n$ sont deux séries convergentes. On appelle :

Série somme la série somme la série entière $\sum_{n\geq 0} (a_n + b_n) z^n$ Série produit (ou produit de Cauchy) la série entière $\sum_{n\geq 0} c_n z^n$ définie par : $\forall n \in$ $\mathbb{N}, \ c_n = \sum_{k=0}^n a_k b_{n-k}$

Série produit par $\lambda \in \mathbb{C}$, la série $\sum_{n>0} (\lambda a_n) z^n$

1.1.2Rayon de convergence

Proposition 1.1.1 Lemme d'Abel

Soit $z_0 \in \mathbb{C}$ tel que la suite $(a_n z_0^n)$ soit bornée; alors pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$, la série numérique $\sum a_n z^n$ est absolument convergente, donc est convergente.

De plus pour tout $0 \le r < |z_0|$ la série entière $\sum a_n z^n$ converge normalement donc uniformément sur le disque $B_r = \{z \in \mathbb{C}, |z| < r\}.$

Preuve : Si $z_0 = 0$ le résultat est vérifié.

Supposons $z_0 \neq 0$ puis que la suite $(a_n z_0^n)$ est bornée il existe M majorant de la suite tel que $|a_n z_0^n| < M, \ \forall n \in \mathbb{N}.$

Soit z tel que $|z| < |z_0|$, alors on a

$$|a_n z^n| = |a_n z_0^n \frac{z^n}{z_0^n}| \le |a_n z_0^n| |\frac{z}{z_0}|^n \le M |\frac{z}{z_0}|^n$$

Comme $|\frac{z}{z_0}|<1$, la série $\sum |\frac{z}{z_0}|^n$ converge donc $\sum |a_nz^n|$ est convergente. Ce qui entraine la convergence de la série $\sum a_nz^n$

Soit r tel que $0 \le r < |z_0|$ et soit $z \in B_r$. $\forall n \in \mathbb{N}$ on a $|a_n z^n| \le |a_n r^n|$, puisque $r < |z_0|$ on vient de voir que la série $\sum |a_n z^n|$ converge, d'où le résultat.

Proposition 1.1.2 Si la série $\sum a_n z_0^n$ converge, alors la série entière $\sum a_n z^n$ est absolument convergente en tout point $z \in \mathbb{C}$ tel que $|z| < |z_0|$

Définition 1.1.4 On appelle rayon de convergence de la série entière $\sum a_n z^n$ la borne supérieure dans \mathbb{R} de l'ensemble

$$I = \{r \ge 0; a_n r^n \text{ soit born\'ee}\}$$

Théorème 1.1.1 Soit R le rayon de convergence de la série entière $\sum a_n z^n$. Alors on :

- Pour tout $z \in \mathbb{C}$ tel que |z| < R la série $\sum a_n z^n$ converge absolument.
- Pour tout $z \in \mathbb{C}$ tel que |z| > R la suite $a_n z^n$ n'est pas bornée donc la série $\sum a_n z^n$ diverge.

Preuve : Si R = 0 alors $I = \{0\}$ et on a le résultat. Si $R \neq 0$ soit $z \in \mathbb{C}$ tel que |z| < R, alors

$$|a_n z^n| = |a_n R^n \frac{z^n}{R^n}| < K |\frac{z^n}{R^n}|$$

D'après le lemme d'Abel $\sum a_n z^n$ est absolument convergente.

Supposons $R \neq +\infty$. Si |z| > R, alors |z| n'appartient pas à I donc $a_n z^n$ n'est pas bornée et la série diverge.

Exemple 1.1.3 - La série $\sum \frac{z^n}{n!}$ converge pour tout $z \in \mathbb{C}$ donc son rayon de convergence

- La série $\sum n^n z^n$ ne converge qu'en zéro donc son rayon de convergence est R=0. La série $\sum_{n\geq 1} \frac{z^n}{n}$ a un rayon de convergence égale à 1

Définition 1.1.5 Soit R le rayon de convergence de la série $\sum a_n z^n$.

Si $R \neq 0$, $B(0,R) = \{z \in \mathbb{C} : |z| < R\}$ est appelé **disque de convergence** de la série entière. $C = \{z \in \mathbb{C} : |z| = R\}$ est appelé **cercle de convergence** et l'intervalle]-R,R[est appelé intervalle de convergence

Remarque 1.1.1 Si |z| = R, on ne connait pas la nature de la série $\sum a_n z^n$ c'est à dire sur le cercle de convergence.

Dans la pratique pour déterminer le rayon de convergence d'une série entière on utilise assez souvent la règle d'Alembert ou de Cauchy.

Règle de Cauchy et d'Alembert

Règle d'Alembert Si $\lfloor \frac{a_{n+1}}{a_n} \rfloor$ tend vers une limite λ finie ou infinie quand n tend vers l'infini, la série $\sum a_n z^n$ a pour rayon de convergence l'inverse de cette limite : $R=\frac{1}{\lambda}$

Exemple 1.1.4 $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$ converge pour tout $x \in \mathbb{R}$. Son rayon de convergence est R = $\sum \frac{x^n}{n^2}$ a pour rayon de convergence R=1.

Règle de Cauchy Soit $\sum a_n z^n$ une série entière. Si la suite de terme général $|a_n|^{\frac{1}{n}}$ tend vers une limite finie ou infinie lorsque n tend vers l'infini alors le rayon de convergence de la série entière est l'inverse de cette limite.

$$R = \frac{1}{\lim_{n \to +\infty} |a_n|^{\frac{1}{n}}}$$

Exemple 1.1.5 $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$ converge pour tout $|x| \leq 2$. Son rayon de convergence est R=2.

Propriétés

Proposition 1.1.3 Soient $\sum a_n$ et $\sum b_n$ deux séries entières de rayons de convergence R_a et R_b .

 $Si \ \forall n \in \mathbb{N}, \ |a_n| \leq |b_n|, \ alors \ R_a \leq R_b.$

Preuve Soit $r \in \mathbb{R}_+$ tel que la suite $b_n r^n$ soit borné. Comme $|a_n| \leq |b_n|$, on a $|a_n r^n| \leq |b_n r^n|$ donc la suite $|a_n r^n|$ est bornée. Donc $R_a \leq R_b$.

Proposition 1.1.4 Si $a_n \sim b_n$, alors $R_a = R_b$.

Théorème 1.1.2 Soient $\sum a_n$ et $\sum b_n$ deux séries entières de rayons de convergence R_a et R_b .

Le rayon de convergence de la somme des deux séries vérifie :

- $Si R_a \neq R_b, \ \rho = \min(R_a, R_b),$
- $-Si R_a = R_b, \ \rho \ge R_a = R_b),$

De plus pour tout $z \in \mathbb{C}$ tel que $|z| \leq \min(R_a, R_b)$, on a

$$\sum_{n=0}^{\infty} (a_n + b_n) z^n = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=0}^{\infty} b_n z^n$$

Exemple 1.1.6 Soient les deux séries $f(x) = \sum_{0}^{\infty} x^{n}$ et $g(x) = \sum_{0}^{\infty} \frac{1-2^{n}}{2^{n}} x^{n}$. Les deux séries ont pour rayon de convergence R = 1. Par contre la somme $(f+g)(x) = \sum_{0}^{\infty} \frac{1}{2^{n}} x^{n}$ a pour rayon de convergence R' = 2.

Théorème 1.1.3 Soient $\sum a_n$ et $\sum b_n$ deux séries entières de rayons de convergence R_a et R_b .

Le rayon de convergence de la série produit $\sum c_n z^n$ avec $c_n = \sum_{k=0}^{+\infty} a_k b_{n-k}$ vérifie $\rho \ge \min(R_a, R_b)$ et pour tout $z \in \mathbf{C}$ tel que $|z| < \min(R_a, R_b)$ on a :

$$\sum_{n=0}^{\infty} c_n z^n = (\sum_{n=0}^{\infty} a_n z^n) (\sum_{n=0}^{\infty} b_n z^n).$$

1.2 Fonction définie par une série entière

Théorème 1.2.1 Continuité de la fonction somme

Soit $\sum a_n z^n$ une série entière de rayon de convergence non nul R. Alors la fonction f définie sur B(0,R) définie par $f(z) = \sum_{0}^{\infty} a_n z^n$ est continue sur le disque de convergence.

Preuve La série de fonctions $\sum a_n z^n$ converge normalement sur le disque de convergence donc uniformément. $\forall n \in \mathbb{N}, z \longmapsto a_n z^n$ est continue sur le disque de convergence. Donc la fonction $z \longmapsto f(z) = \sum_0^\infty a_n z^n$ est continue sur le disque de convergence d'après le théorème de continuité des séries de fonctions.

Théorème 1.2.2 Dérivabilité de la fonction somme

Soit $\sum a_n z^n$ une série entière de rayon de convergence non nul R. Alors sa somme f(z) est une fonction dérivable sur le disque de convergence.

Preuve:

Proposition 1.2.1 Si a_n est une suite de nombres rélles ou complexes alors les séries $\sum na_nz^{n-1}$ et $\sum a_nz^n$ ont même rayon de convergence.

Preuve : Soit R respectivement R' les rayons de convergences des séries $\sum a_n z^n$ respectivement $\sum n a_n z^{n-1}$.

- Soit $r \in \mathbb{R}_+$ tel que $|na_n r^{n-1}|$ soit bornée. Pour tout $n \in \mathbb{N}$

$$|a_n|r^n \le |na_n|r^n = r|na_n|r^{n-1}$$

Donc $|a_n r^n|$ est borné d'où $R \ge R'$

- Soit $r \in \mathbb{R}_+$ avec r < R et soit $h \in \mathbb{R}_+^*$ tel que r + h < R

$$\forall n \in \mathbb{N}, \ nr^n h \le C_n^0 r^n + C_n^1 \le r^{n-1} h + \ldots + C_n^n h^n = (r+h)^n$$

 $|a_nnr^n|\leq \frac{1}{h}|a_n|(r+h)^n$ donc $|na_nr^n|$ est bornée et donc $R'\geq R$ d'où R=R'

Théorème 1.2.3 Intégrabilité de la fonction somme

Soit $\sum a_n t^n$ une série entière de la variable réelle de rayon de convergence R positif. Si [a,b] est un rayon de convergence inclus dans]-R,R[alors on a

$$\int_a^b \left(\sum_{k=0}^\infty a_n t^n\right) dt = \sum_{n=0}^\infty a_n \int_a^b t^n dt$$

Preuve : $\sum a_n t^n$ converge uniformément sur [a, b]

 $a_n t^n$ est intégrable sur [a, b] pour tout $n \in \mathbb{N}$ Alors le théorème d'inversion somme et intégrale des séries de fonctions donne le résultat.

1.3 Fonctions développables en série entière

Définition 1.3.1 Soit Ω un voisinage ouvert de zéro dans \mathbb{C} et $f:\Omega \longrightarrow \mathbb{C}$ une fonction définie sur Ω . On dit f est développable en série entière dans Ω s'il existe une suite $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}$ telle que $\forall z\in\Omega$ on a

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

Théorème 1.3.1 Soit $f: \omega \longrightarrow \mathbb{C}$ une fonction développable en série entière au voisinage ouvert Ω de zéro. Alors les cæfficients de cette série entière sont les nombres

$$a_n = \frac{1}{n!} f^{(n)}(0)$$

Le développement en série entière d'une fonction f(z) est unique et s'identifie avec le développement de Taylor de la fonction.

Cas de la variable réelle

Définition 1.3.2 Soit f une fonction définie d'une partie X de \mathbb{R} dans \mathbb{C} . On dit f est développable en série entière en 0, s'il existe une série entière $\sum a_n t^n$ de rayon de convergence R > 0 et $r \in]0, R[$ avec $]-r, r[\subset X$ tel que

$$\forall t \in]-r, r[, f(t) = \sum_{n=0}^{\infty} a_n t^n$$

Théorème 1.3.2 Soit $X \subset \mathbb{R}$ et f une fonction définie de X dans \mathbb{R} développable en série entière. Alors les cœfficients de cette série sont les nombres $a_n = \frac{1}{n!}f^{(n)}(0)$

Exercice 1.3.1 Donner un développement en série entière des fonctions suivantes :

$$f(x) = \frac{\arcsin\sqrt{x}}{\sqrt{x(1-x)}};$$

$$g(t) = (1+t)^{\alpha}, \quad |t| < 1 \ \alpha \in \mathbb{R}$$

On pourra utiliser l'équation différentielle suivante $(1+t)y' - \alpha y = 0, \ y(0) = 1$

Exercice 1.3.2 Donner le développement en série entière de la fonction $f(t) = \arctan t$

Solution

On sait $f(t) = \int_0^t \frac{1}{x^2} dx$.

Si $|t| < 1 \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ Donc $f(t) = \sum_{n=0}^{\infty} (-1)^n \int_0^t x^{2n} dx = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} t^{2n+1}$

$$f(t) = \sum_{n=0}^{\infty} \left(\frac{-1)^n}{2n+1} t^{2n+1}\right)$$

Développement en série entière de quelques fonctions

- L'exponentielle complexe

On appelle exponentielle complexe notée e^z la série entière

$$\forall z \in \mathbb{C}, \ e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

-Les fonctions trigonométriques et hyperboliques complexes $\forall z \in \mathbb{C}$,

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$

$$\cosh z = \frac{e^z + e^{-z}}{2} = \sum_{n=0}^{+\infty} \frac{z^{2n}}{(2n)!}$$

$$\sinh z = \frac{e^z - e^{-z}}{2} = \sum_{n=0}^{+\infty} \frac{z^{2n+1}}{(2n+1)!}$$

Dans le cas réel

$$e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!}, e^{-x} = \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{n}}{n!}$$

$$\cos x = \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}, \quad \sin x = \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cosh z = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} \sinh x = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

Toutes ces fonctions ont un rayon de convergence égale à $+\infty$

$$\ln(1+t) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{t^n}{n}, \quad \ln(1-t) = -\sum_{n=1}^{+\infty} \frac{t^n}{n}$$

$$(1+t)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} t^n$$

$$\frac{1}{1-x} = \sum_{n\in\mathbb{N}} x^n, \quad \frac{1}{1+x} = \sum_{n\in\mathbb{N}} (-1)^n x^n$$

$$\arctan t = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} t^{2n+1}, \quad \arcsin t = \sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \frac{t^{2n+1}}{2n+1}$$

Exercice 1.3.3 1. Rappeler le développement en série entière des fonctions suivantes :

$$x \mapsto \frac{1}{1+x}, \ x \mapsto \cos x, \ x \mapsto e^x, x \mapsto (1+x)^{\alpha}$$

2. En déduire le développement en série entière au voisinage de x=0 des fonctions suivantes :

$$x \mapsto \frac{1}{1+x^2}, \ x \mapsto \arctan x, \ x \mapsto h(x) = \frac{1}{x+e^a} \quad a > 0$$

3. Développer en série entière les fonctions suivantes au voisinage de x = 0:

$$f(x) = \frac{1}{2+x}, \ g(x) = \int_0^x e^{-t^2} dt, \ h(t) = \int_0^x \frac{e^{t^2} + e^{-t^2}}{2} dt$$

Exercice 1.3.4 1. Déterminer le développement en série entière de $f: x \longrightarrow e^{-x^2} \int_0^x e^{t^2} dt$ 2. Expliciter la suite (a_n) de réels telle que :

$$\forall x \in]-1,1[\sqrt{1-x} = \sum_{n=0}^{+\infty} a_n x^n$$

et montrer que la série $\sum |a_n|$ est convergente.

Exercice 1.3.5 On considère l'équation différentielle suivante

$$x(x^2+1)y'' + (x^2-1)y' = 1$$
 (E)

1) On suppose qu'il existe une solution de (E) développable en série entière $\sum a_n x^n$. Calculer a_1 et montrer que

$$(n+1)a_{n+1} + (n-1)a_{n-1} = 0 \ pour \ n \ge 2$$

Montrer que pour $n \ge 1$, $a_{2n} = (-1)^{n-1} \frac{a_2}{n}$ et que pour $n \ge 0$, $a_{2n+1} = \frac{(-1)^{n-1}}{2n+1}$. Quel est le rayon de convergence de cette série entière?

2) En déduire que l'expression des solutions de (E) développable en série entière est

$$y(x) = -\arctan x + a\ln(1+x^2) + b$$

 $avec \ a \ et \ b \ dans \ \mathbf{R}$

Exercice 1.3.6 Calculer le rayon de convergence des séries entières

$$f(x) = \sum_{n=1}^{\infty} x^n, \ g(x) = \sum_{n=1}^{\infty} \left(\frac{n+a}{n+b}\right)^n x^n, \ (a > 0, b > 0)$$

$$h(x) = \sum_{n=1}^{\infty} \frac{n^n}{n!} x^n, \ i(x) = \sum_{n=1}^{\infty} \frac{n!}{2^{2n} \sqrt{(2n)!}} x^n$$

Exercice 1.3.7 Calculer le rayon de convergence des séries suivantes

1)
$$\sum_{n=0}^{\infty} n! z^n$$
, 2) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$, 3) $\sum_{n=0}^{\infty} n^{\alpha} z^n$, $\alpha \in \mathbb{R}$
4) $\sum_{n=0}^{\infty} \frac{z^n}{1+5^n}$, 5) $\sum_{n=0}^{\infty} a_n x^n$, avec $a_n = \int_0^{\pi/2} \sin^n t dt$
6) $\sum_{n=0}^{\infty} \ln n z^n$, 7) $\sum_{n=0}^{\infty} \frac{n!}{(n+1)^n} x^n$

Exercice 1.3.8 On se donne l'équation différentielle suivante sur $]0,\infty[$

$$(x^2 + x)y'' + (3x + 1)y' + y = 0$$

On cherche une solution de cette équation qui soit développable en série entière. On suppose que cette solution est de la forme $Y(x) = \sum_{n=0}^{+\infty} a_n x^n$ sur l'intervalle de convergence]-r,r[

1. Trouver une relation simple entre a_n et a_{n+1} pour tout $n \in \mathbb{N}$ En déduire que $a_n = (-1)^n a_0$ et une expression simple de Y (On donnera la valeur de la somme de la série entière).

Exercice 1.3.9 On considère la série numérique de terme général

$$u_n = \ln(1 + \frac{a^n}{n+2}), \ où \ a \in \mathbb{R}.$$

- 1) Si a > 0 étudier la convergence de $\sum_{n \geq 0} u_n$
- 2) Si a = -1, démontrer que $\sum_{n \geq 0} u_n$ converge et calculer sa somme.

Exercice 1.3.10 Etudier la convergence simple de la série entière $\sum \sin \frac{1}{\sqrt{n}} x^n$; $x \in \mathbb{R}$.