Cours D'Analyse3 L2 MPCI-SID

Par **Dr Ibrahima FAYE, Maître de Conférences**, Université Alioune Diop de Bambey

2013 - 2014

Table des matières

1	Inté	grales Généralisées	2
	1.1	Définitions et exemples	2
	1.2	Calcul d'intégrales généralisées	5
		1.2.1 Utilisation d'une primitive	
		1.2.2 Changement de variables	5
		1.2.3 Intégration par parties	6
	1.3	Critères de convergences	8
		1.3.1 Critère de Cauchy	8
		1.3.2 Intégrale de fonctions positives	9
		1.3.3 Critères d'équivalence	.0
	1.4	Convergence absolue et Semi-convergence	2
		1.4.1 Critère d'Abel	.5
		1.4.2 Critère de Dirichlet	5
	1.5	Exercices	.6

Chapitre 1

Intégrales Généralisées

On considère une fonction f intégrable au sens de Riemann surtout intervalle fermé strict d'un intervalle ouvert]a,b[(par exemple f continue sur]a,b[) et on se demande si on peut donner un sens à la quantité $\int_a^b f(x)dx$. Cette intégrale sera appelée intégrale généralisée de f sur]a,b[. L'une des bornes a ou b peut être infini ou les deux en même temps. Dans la suite on s'intéressera à l'étude de l'intégrale généraliséE de f.

1.1 Définitions et exemples

Définition 1.1.1 Soit I un intervalle quelconque de \mathbb{R} . Une fonction numérique $f:I\longrightarrow\mathbb{R}$ est dite **localement intégrale** sur I, si sa restriction à chaque intervalle fermé de I est Riemann intégrable.

Définition 1.1.2 1)Soit $f:]a,b] \longrightarrow \mathbb{R}$, $-\infty \le a < b < +\infty$ une fonction localement intégrable. On dira que l'intégrale de f sur]a,b] est **convergente** ou f est **intégrable** si la fonction G définie sur]a,b] par

 $G(x) = \int_x^b f(t)dt$, admet **une limite finie** lorsque x tend vers a.

En cas d'existence cette limite est appelée intégrale généralisée de f sur]a,b] et est notée

$$\int_{a}^{b} f(t)dt = \lim_{x \to a} \int_{x}^{b} f(t)dt.$$

Si cette limite n'existe pas dans \mathbb{R} , on dit que l'intégrale de f sur]a,b] est **divergente**. 2)Soit $f:[a,b[\longrightarrow \mathbb{R}, -\infty < a < b \leq +\infty \text{ une fonction localement intégrable.}$

On dira que l'intégrale de f sur [a,b[est **convergente** ou f est **intégrable** si la fonction F définie sur [a,b[par

 $F(x) = \int_a^x f(t)dt$, admet **une limite finie** lorsque x tend vers b.

L'intégrale généralisée de f sur [a,b[est alors le nombre réel $\int_a^b f(t)dt = \lim_{x\to b} \int_a^x f(t)dt$.

Exemple 1.1.1 Les intégrales de Riemann

Une famille importante d'intégrales généralisées est donnée par celle des intégrales de Riemann.

Théorème 1.1.1 Soit α un réel et f la fonction définie sur $]0, +\infty[$ par :

$$f: t \mapsto \frac{1}{t^{\alpha}}.$$

1. L'intégrale de f sur $[1, +\infty[$ est convergente si et seulement si, $\alpha > 1$ avec

$$\forall \alpha > 1, \ \int_{1}^{+\infty} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1}.$$

2. L'intégrale de f sur [0,1] est convergente si et seulement si, $\alpha < 1$ avec

$$\forall \alpha < 1, \int_0^1 \frac{dt}{t^\alpha} = \frac{1}{1 - \alpha}.$$

Preuve. 1. Pour tout x > 1, Calculons d'abord

$$\int_{1}^{x} \frac{dt}{t^{\alpha}} = \begin{cases} \frac{1}{1-\alpha} (\frac{1}{x^{\alpha-1}} - 1) & si \ \alpha \neq 1, \\ \ln(x) & si \ \alpha = 1, \end{cases}$$
 (1.1)

et

$$\lim_{x \to +\infty} \int_{1}^{x} f(t)dt = \begin{cases} \frac{1}{1-\alpha} & \text{si } \alpha > 1\\ +\infty & \text{si } \alpha < 1 \end{cases}$$
 (1.2)

De $m \hat{e} m e \ pour \ 0 < x < 1 \ on \ a$

$$\int_{x}^{1} \frac{dt}{t^{\alpha}} = \begin{cases} \frac{1}{\alpha - 1} (1 - \frac{1}{x^{\alpha - 1}}) & \text{si } \alpha \neq 1, \\ -\ln(x) & \text{si } \alpha = 1 \end{cases}$$
 (1.3)

et

$$\lim_{x \to 0} \int_{x}^{1} f(t)dt = \begin{cases} \frac{1}{1-\alpha} & \text{si } \alpha < 1\\ +\infty & \text{si } \alpha \ge 1 \end{cases}$$
 (1.4)

Remarque 1.1.1 En conclusion $\int_0^{+\infty} \frac{dt}{t^{\alpha}}$ est divergente quel que soit le réel α .

Exemple 1.1.2 Soit à calculer $\int_1^{+\infty} \cos t dt$. On a $\int_1^x \cos t dt = [\sin t]_1^x = \sin x - \sin 1$ qui n'a pas de limite lorsque x tend vers $+\infty$. donc $\int_1^{+\infty} \cos x dx$ est une intégrale divergente.

Définition 1.1.3 Soit $f:]a,b[\longrightarrow \mathbb{R}, -\infty \le a < b \le +\infty$ une fonction numérique localement intégrale. Soit $c \in]a,b[$. On dit que l'intégrale de f sur]a,b[est convergente si chacune des intégrales $\int_a^c f(x)dx$ et $\int_c^b f(x)dx$ est convergente et on pose

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Remarque 1.1.2 Cette définition est indépendante du point c.

Exemple 1.1.3 Soit à calculer $\int_{-\infty}^{+\infty} \frac{dt}{1+t^2}$. $\forall c \in]-\infty, +\infty[, \int_{-\infty}^{c} \frac{dt}{1+t^2} = [Arctgt]_{-\infty}^{c} = arctgc + \frac{\pi}{2}.$ $\int_{c}^{+\infty} \frac{dt}{1+t^2} = [Arctgt]_{c}^{+\infty} = -arctgc + \frac{\pi}{2}.$ On en déduit donc que $\int_{-\infty}^{+\infty} \frac{dt}{1+t^2} = \int_{-\infty}^{c} \frac{dt}{1+t^2} + \int_{c}^{+\infty} \frac{dt}{1+t^2} = \frac{\pi}{2} + \frac{\pi}{2} = \pi$

Proposition 1.1.1 Soit f une fonction localement intégrable sur]a,b[. Pour que l'intégrale de f sur]a,b[soit convergente il faut et il suffit que la fonction à deux variables

$$h(x,y) = \int_{x}^{y} f(t)dt, \ a < x < y < b$$

ait une limite finie lorsque $(x,y) \to (a,b)$ dans \mathbb{R}^2 et dans ce cas on a

$$\int_{a}^{b} f(t)dt = \lim_{(x,y)\to(a,b)} \int_{x}^{y} f(t)dt$$

En particulier si f est localement intégrable sur $]-\infty,+\infty[$ l'intégrale $\int_{-\infty}^{+\infty} f(x)dx$ existe équivaut à l'existence de $\lim_{A\to+\infty,A'\to-\infty}\int_{A'}^A f(t)dt$ avec A et A' indépendants.

Remarque 1.1.3 Il peut exister $\lim_{a\to +\infty} \int_{-a}^{a} f(t)dt$ sans pour autant que $\int_{-\infty}^{+\infty} f(t)dt$ existe.

Pour s'en convaincre considérer $\int_{-a}^{a} sint dt = 0$ et $\lim_{a \to +\infty a' \to -\infty} \int_{a}^{a'} sin t dt$ qui n'existe pas

Exercice 1.1.1 1. Montrerque l'intégrale de $f: t \mapsto e^{-t}$ est convergente sur $[0, +\infty[$ et que $\int_0^{+\infty} e^{-t} dt = 1$.

- 2. Montrer que l'intégrale de $f: t \mapsto \frac{1}{\sqrt{t}}$ est convergente sur]0,1] et $\int_0^1 \frac{dt}{\sqrt{t}} = 2$
- 3. Montrer que l'intégrale de $f:t\mapsto \frac{1}{t^2}$ est divergente sur]0,1]
- 4. Montrer que l'intégrale de $f: t \mapsto \sin t$ est convergente sur $[0, +\infty[$.

Solution 1.1.1

1. Pour tout x > 0 on a :

$$F(x) = \int_0^x e^{-t} dt = 1 - e^{-x} \to 1_{x \to +\infty} = 1.$$

2. Pour tout $x \in]0,1]$ on a

$$F(x) = \int_{x}^{1} \frac{dt}{\sqrt{t}} = 2 - 2\sqrt{x} \to 2_{x\to 0}2.$$

3. Pour tout $x \in]0,1]$ on a :

$$F(x) = \int_{x}^{1} \frac{dt}{t^{2}} = \frac{1}{x} - 1 \to_{x \to 0^{+}} + \infty.$$

4. Pour tout x > 0 on a :

$$F(x) = \int_0^x \sin t dt = 1 - \cos x$$

et la fonction n'a pas de limite en $+\infty$.

1.2 Calcul d'intégrales généralisées

1.2.1 Utilisation d'une primitive

Soit $f:]a, b[\longrightarrow \mathbb{R}$ une fonction continue. Si f admet une primitive sur]a, b[, la convergence de $\int_a^b f(t)dt$ équivaut à l'existence des deux limites $F(a+) = \lim_{x \to a, x > a} F(x)$ et $F(b-) = \lim_{x \to b, x < b} F(x)$ et si ces limites existent on a

$$\int_{a}^{b} f(t)dt = F(b-) - F(a+).$$

Exercice 1.2.1 Calculer les intégrales $I = \int_0^{+\infty} \exp(-ax) \cos(bx) dx$ et $J = \int_0^{+\infty} \exp(-ax) \sin(bx) dx$ avec a > 0.

Exercice 1.2.2 Calculer les intégrales généralisées suivantes :

a)
$$\int_0^\infty \frac{dx}{(1+e^x)(1+e^{-x})}$$
, b) $\int_0^\infty \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$, c) $\int_0^1 \ln x \, dx$ d) $\int_0^{\pi/2} \frac{\cos 2x \, dx}{\sqrt{2x}}$.

1.2.2 Changement de variables

Proposition 1.2.1 Soit $\varphi:]a, b[\longrightarrow]\alpha, \beta[$ une bijection continument dérivable et soit $f:]\alpha, \beta[\longrightarrow] \mathbb{R}$ une fonction continue. Pour que l'intégrale de f sur $]\alpha, \beta[$ soit convergente il faut et il suffit que l'intégrale de $(f \circ \varphi) \varphi'$ le soit sur]a, b[et dans ce cas on a

$$\int_{\alpha}^{\beta} f(t)dt = \int_{a}^{b} f(\varphi(t))\varphi'(t)dt$$

Exercice 1.2.3 Calculer $I = \int_1^{+\infty} \frac{dx}{x\sqrt{x^2-1}}$.

Solution 1.2.3

Posons x=1/t,

$$I = \int_{1}^{+\infty} \frac{dx}{x\sqrt{x^{2} - 1}} = -\int_{1}^{0} \frac{1}{\frac{1}{t}\sqrt{\frac{1}{t^{2}} - 1}} \frac{1}{t^{2}} dt$$
$$= -\int_{1}^{0} \frac{1}{t\sqrt{\frac{1}{t^{2}} - 1}} dt = \int_{0}^{1} \frac{dt}{\sqrt{1 - t^{2}}} = \arcsin t \Big]_{0}^{1} = \frac{\pi}{2}.$$

Exercice 1.2.4 Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{\sqrt{t+t^2}} dt$ converge et calculer sa valeur.

Solution 1.2.4

En posant $t = u^2$ on a

$$\int_0^{+\infty} \frac{1}{\sqrt{t} + t^2} dt = 2 \int_0^{+\infty} \frac{du}{1 + u^3}$$

et une décomposition en éléments simple donc $I = \frac{4}{9}\sqrt{3}\pi$.

1.2.3 Intégration par parties

Théorème 1.2.1 Soient $u, v:]a, b[\longrightarrow \mathbb{R}$ deux fonctions continument dérivables $(\in \mathcal{C}^1)$ telles que $A = \lim_{x \to a+} u(x)v(x)$ et $B = \lim_{x \to b-} u(x)v(x)$ existent. Si l'une des intégrales $\int_a^b u(x)v'(x)dx$ ou $\int_a^b u'(x)v(x)dx$ est convergente il est est de même de l'autre et on a

$$\int_a^b u(x)v'(x)dx = B - A - \int_a^b u'(x)v(x)dx.$$

Preuve. Le théorème d'intégration par parties permet d'écrire pour tout $x < y \in]a,b[$:

$$\int_{x}^{y} f(t)g'(t)dt = f(y)g(y) - f(x)g(x) - \int_{x}^{y} f'(t)g(t)dt.$$

et faisant d'abord tendre y vers b on a

$$\int_{x}^{b} f(t)g'(t)dt = B - f(x)g(x) - \int_{x}^{b} f'(t)g(t)dt.$$

De même en faisant tendre x vers a on obtient le résultat.

Exemple 1.2.1 Calculer l'intégrale
$$I = \int_0^1 \frac{\log x}{1+x^2} dx$$
. $I = \int_0^1 (\log x) darctgx = (\log x) arctgx \Big]_0^1 - \int_0^1 \frac{arctgx}{x} dx = -\int_0^1 \frac{arctgx}{x} dx$

Exercice 1.2.5 Calculer les intégrales généralisées suivantes

a)
$$\int_1^\infty \frac{\ln x}{x^2} dx$$
, b) $\int_0^1 \frac{\ln x}{(1+x)^2}$, c) $\int_0^1 \ln x \, dx$.

Solution 1.2.5

b) En intégrant par parties on a pour tout $x \in]0,1]$

$$F(x) = \int_{1}^{x} \frac{\ln t}{(1+t)^{2}} dt = \left[-\frac{\ln t}{1+t} \right]_{x}^{1} + \int_{x}^{1} \frac{dt}{t(1+t)}$$
$$= \left[\ln \left(\frac{t}{(1+t)} \right) - \frac{\ln t}{1+t} \right]_{x}^{1}$$
$$-\ln 2 - \ln \left(\frac{x}{1+x} \right) + \frac{\ln x}{1+x} \to_{x\to 0} - \ln 2.$$

Exercice 1.2.6 Montrer que $I_n = \int_0^{+\infty} t^n e^{-t} dt$ est convergente et calculer sa valeur pour tout $n \in \mathbb{N}$.

Solution 1.2.6

On a $I_0 = \int_0^{+\infty} e^{-t} dt = 1$. et une intégration par parties nous montre que $I_{n+1} = (n+1)I_n$, ce qui donne $I_n = n!$

Exercice 1.2.7 Soit f une fonction continue de \mathbb{R} à valeurs dans \mathbb{R} telle que $\lim_{x\to +\infty} f(x) = l$ et $\lim_{x\to -\infty} f(x) = l'$.

- 1. Existence et calcul de $\int_{-\infty}^{+\infty} (f(t+1) f(t))dt$.
- 2. Calcul de $\int_{-\infty}^{+\infty} (arctan(t+1) arctan(t)) dt$.

Solution 1.2.7:

1. En notant $F(x) = \int_0^x f(t)dt$ pour x > 0 et en utilisant le théorème des accroissements finis, on a

$$\int_0^x (f(t+1) - f(t))dt = [F(t+1) - F(t)]_0^x = F(x+1) - F(x) - F(1) = f(c_x) - F(1)$$

où $c_x \in]x, x+1[$. Et en faisant tendre x vers $+\infty$ on en déduit que :

$$\int_{0}^{+\infty} (f(t+1) - f(t))dt = F(1) - l$$

et

De manière analogue, on vérifie que

$$\int_{-\infty}^{0} (f(t+1) - f(t))dt = l' - F(1).$$

et

$$\int_{-\infty}^{+\infty} (f(t+1) - f(t))dt = l - l'.$$

2. $f(t) = arctant \rightarrow_{t \to \pm \infty} \pm \frac{\pi}{2}$, on en déduit que :

$$\int_{-\infty}^{+\infty} (arctan(t+1) - arctanf(t))dt = \pi.$$

Exercice 1.2.8 Soit λ un nombre complexe. Etudier la nature de l'intégrale $\int_0^{+\infty} e^{\lambda x} dx$ en précisant sa valeur en cas de convergence.

Solution 1.2.8

Soit F la primitive de f définie sur $]0, +\infty[$ par :

$$F(x) = \int_0^x e^{\lambda t} dt = \begin{cases} x \text{ si } \lambda = 0\\ \frac{e^{\lambda x} - 1}{\lambda} \text{ si } \lambda \neq 0 \end{cases}$$
 (1.5)

Pour $\lambda = 0$, on a $\lim_{\to +\infty} F(x) = +\infty$ et l'intégrale diverge. Pour $Re(\lambda) > 0$, on a :

$$|F(x)| = \left| \frac{e^{\lambda x}}{\lambda} \right| |1 - e^{-\lambda x}| \ge \left| \frac{e^{\lambda x}}{\lambda} \right| |1 - |e^{-\lambda x}| = \frac{e^{Re(\lambda)x}}{|\lambda|} (1 - e^{-Re(\lambda)x}) \to_{x \to +\infty} +\infty$$

et l'intégrale diverge.

Pour $Re(\lambda) < 0$, on a :

$$\left| \frac{e^{\lambda x}}{\lambda} \right| = \frac{e^{Re(\lambda)x}}{|\lambda|} | \to_{x \to +\infty} 0$$

et l'intégrale converge vers $-\frac{1}{\lambda}$. Il reste à considérer le cas où $Re(\lambda) = 0$, soit le cas où $\lambda = iy$ avec $y \in \mathbb{R}^*$. Dans ce cas l'intégrale diverge puisque la fonction $\varphi : x \mapsto e^{iyx}$ n'a pas de limite à l'infini.

1.3 Critères de convergences

1.3.1 Critère de Cauchy

Théorème 1.3.1 Soit $f:]a,b] \longrightarrow \mathbb{R}$ une fonction localement intégrable. Alors $\int_a^b f(t)dt$ est convergente si et seulement si elle vérifie la propriété suivante dite de **Cauchy**: pour tout $\epsilon > 0$, $\exists \alpha > 0$ tels que pour tous points x,y de]a,b] vérifiant la relation $0 < x - a < \alpha$ et $0 < y - a < \alpha$ alors

$$\left| \int_{x}^{y} f(t)dt \right| < \epsilon.$$

Preuve. Supposons que $\int_a^b f(t)dt$ convergente, donc la fonction $G(x) = \int_x^b f(t)dt$ admet une limite finie l lorsque x tend vers a, soit $\epsilon > 0$ tel que $0 < u - a < \alpha$, entraine $|\int_u^b f(t)dt - l| < \epsilon/2$. Si $0 < x - a < y - a < \alpha$, alors $\int_x^y f(t)dt = \int_x^b f(t)dt - \int_y^b f(t)dt$ d'où

$$\left| \int_{x}^{y} f(t)dt \right| \le \left| \int_{x}^{b} f(t)dt - l \right| + \left| \int_{y}^{b} f(t)dt - l \right| < \epsilon/2 + \epsilon/2 = \epsilon$$

Supposons maintenant que le critère de Cauchy soit vérifié. Soit x_n une suite quelconque tendant vers a lorsque n tend vers $+\infty$. La propriété de Cauchy implique que la suite $(G(x_n))_{n\in\mathbb{N}}$, où $G(x_n)=\int_{x_n}^b f(t)dt$ est de Cauchy. Donc la suite $G(x_n)$ est convergente. Pour terminer la preuve il suffit simplement de montrer que

$$\int_{a}^{b} f(t)dt = l \text{ ie } G(x_n) \to \int_{a}^{b} f(t)dt \diamondsuit$$

Exercice 1.3.1 Soit $f:[a,b[\longrightarrow \mathbb{R} \ une\ fonction\ localement\ intégrable.$ Enoncer le critère de Cauchy pour l'intégrale généralisée $\int_a^b f(t)dt$.

1.3.2 Intégrale de fonctions positives

Soit f une fonction numérique positive localement intégrable sur [a,b[. La fonction $x \mapsto F(x) = \int_a^x f(t)dt$ est croissante.

La fonction F admet une limite finie en b- si et seulement si elle est majorée sur [a,b[ie $\exists M \geq 0$ tels que $\forall x \in [a,b[$, on a $\int_a^x f(t)dt \leq M$.

Proposition 1.3.1 Si f est a valeurs positives et si $\int_a^b f(x)dx$ converge, alors $\int_a^b f(x)dx \ge 0$.

Dans le cas où f est continue sur [a,b[, l'égalité $\int_a^b f(x)dx = 0$ est réalisée si, et seulement si, f est identiquement nulle.

Proposition 1.3.2 Soit f une fonction positive localement intégrable sur [a, b[. Alors $\int_a^b f(t)dt$ est convergente si et seulement si $\exists M > 0 : \forall x \in [a, b[$, $\int_a^x f(t)dt \leq M$ et dans ce cas $\int_a^b f(t)dt = \sup_{a < x < b} \int_a^x f(t)dt$

On rappelle que si F est croissante de [a,b[dans \mathbb{R} elle admet une limite finie en b si, et seulement si, elle est majorée. Dans le cas où elle est majorée, on a

$$\lim_{x \to b} F(x) = \sup_{x \in [a,b[} F(x)$$

et dans le cas contraire, on a $\lim_{x\to b} F(x) = +\infty$.

Preuve. $F(x) = \int_a^x f(t)dt$ Si $a \le x < x' < b$, alors comme $f \ge 0$ $\int_x^{x'} f(t)dt \ge 0$ donc $F(x') = \int_a^{x'} f(t)dt = \int_a^x f(t)dt + \int_x^{x'} f(t)dt \ge \int_a^x f(t)dt = F(x)$. Donc F est croissante.

 $\lim_{x\to b^-} F(x)$ existe et cette limite est finie si et seulement si F est bornée supérieurement. Par conséquent

$$\int_a^b f(x) = \lim_{x \to b^-} F(x) = \sup_{a \le x < b} \int_a^x f(t) dt. \blacksquare$$

Proposition 1.3.3 Critère de comparaison

Soient f et g deux fonctions numériques positives localement intégrables sur [a,b[et telles que $f(x) \leq g(x)$ alors

1)Si $\int_a^b g(x)dx$ converge, il en est de même de $\int_a^b f(x)dx$

2)Si $\int_a^b f(x)dx$ diverge il en est de $\int_a^b g(x)dx$

Preuve. En notant $F(x) = \int_a^x f(t)dt$ et $G(x) = \int_a^x g(t)dt$ pour tout $x \in [a, b[$, on a $F(x) \leq G(x)$ pour tout $x \in [a, b[$.

Si l'intégrale de g sur [a, b[est convergente la fonction G est bornée et il en est de même de la fonction Fvde sorte que l'intégrale de f sur [a, b[est convergente.

Si l'intégrale de f sur [a, b[diverge alors $\lim_{x\to b} F(x) = +\infty$ et $\lim_{x\to b} G(x) = +\infty$ de sorte que l'intégrale de g sur [a, b[est aussi divergente.

Exercice 1.3.2 Calculer l'intégrale $\int_1^{+\infty} \frac{\sqrt{\ln x}}{x^3} dx$.

Solution 1.3.2 $\forall x \geq 1$, on a $0 \leq \frac{\sqrt{\ln x}}{x^3} \leq \frac{1}{x^{5/2}}$. Or $\int_1^\infty \frac{dx}{x^{5/2}}$ converge donc $\int_1^{+\infty} \frac{\sqrt{\ln x}}{x^3} dx$ aussi d'après le critère de comparaison.

Exercice 1.3.3 Etudier la convergence de l'intégrale $\int_1^{+\infty} \frac{\sin^2 x}{x^3} dx$.

1.3.3 Critères d'équivalence

Proposition 1.3.4 Soient f, g deux fonctions positives localement intégrables définies $de [a, b] \longrightarrow \mathbb{R}$.

Si f est équivalente à g en b, alors les intégrales $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ sont de même nature.

Preuve. Supposons $f \sim_b g$ ce qui implique $g(t) = f(t)(1 + \varepsilon(t))$ avec $\lim_{t\to b} \varepsilon(t) = 0$. Comme $\lim_{t\to b} \varepsilon(t) = 0$, $\exists \alpha > 0$, $0 < b - t < \alpha$, on a $|\varepsilon(t)| < 1/2$. Ce qui entraine donc que $\frac{1}{2}f(t) \leq g(t) \leq \frac{3}{2}f(t)$.

Soient x, y deux éléments de [a, b] tel que $0 < b - y < b - x < \alpha$ on a

$$1/2 \int_x^y f(t)dt \le \int_x^y g(t)dt \le \frac{3}{2} \int_x^y f(t)dt$$

Supposons que $\int_a^b f(t)dt$ soit convergente. D'après la propriété de Cauchy on a $\forall \epsilon > 0, \exists \delta > 0$ tel que si $0 < b - y < b - x < \delta$, on a

$$|\int_{x}^{y} f(t)dt| = \int_{x}^{y} f(t)dt < \epsilon$$

Posons $\beta = \inf(\delta, \alpha)$ Si $0 < b - y < b - x < \beta$, on a

$$\left| \int_{x}^{y} g(t)dt \right| \le \frac{3}{2} \int_{x}^{y} f(t)dt < \frac{3}{2} \epsilon$$

donc $\int_a^b g(t)dt$ vérifie le critère de Cauchy par suite elle converge.

On montre aussi de la même manière que si $\int_a^b g(t)dt$ est convergente alors $\int_a^b f(t)dt$ est aussi convergente.

Pour le cas $b=+\infty$ on procédera aussi de la même manière.

Exemple 1.3.1 Calculer l'intégrale $\int_1^{+\infty} \frac{dx}{x(x+1)}$. Au voisinage de l'infini on a $\frac{1}{x(x+1)} \sim \frac{1}{x^2}$. Or $\int_1^{+\infty} \frac{dx}{x^2}$ converge d'après le critère de Rie-

mann donc d'après le critère d'équivalence $\int_1^{+\infty} \frac{dx}{x(x+1)}$ converge. Mais par contre on remarque que les deux intégrales n'ont pas la même valeur. En effet on a $\int_1^{+\infty} \frac{dx}{x^2} = 1$ et $\int_1^{+\infty} \frac{dx}{x(x+1)} = \ln 2$.

Exercice 1.3.4 Montrer que les intégrales suivantes convergent :

a)
$$\int_0^\infty \frac{1}{\sqrt{x}} e^{-\sqrt{x^2 + x + 1}} dx$$
, b) $\int_{-\pi/2}^{\pi/2} \ln(1 + \sin x) dx$.

Solution 1.3.4

a) Au voisinage de 0 :

 $\frac{1}{\sqrt{x}}e^{-\sqrt{x^2+x+1}}\sim \frac{e^{-1}}{\sqrt{x}}$ donc par le critère de comparaison $\int_0 \frac{1}{\sqrt{x}}e^{-\sqrt{x^2+x+1}}dx$ converge car $\int_0^{\infty} \frac{e^{-1}}{\sqrt{x}}$ converge.

Au voisinage de $+\infty$: $\frac{1}{\sqrt{x}}e^{-\sqrt{x^2+x+1}} \le e^{-x} \text{ donc } \int_{-\infty}^{\infty} \frac{1}{\sqrt{x}}e^{-\sqrt{x^2+x+1}} dx \text{ converge par comparaison car } \int_{-\infty}^{+\infty} e^{-x} dx$

b) Au voisinage de $-\pi/2$ posons $u = x + \pi/2$.

$$\ln(1 + \sin x) = \ln(1 - \cos u) = \ln(u^2 + o(u^2)) \sim 2 \ln u$$

Comme $\int_0 \ln u \, du$ converge donc $\int_{-\pi/2}^{\pi/2} \ln(1+\sin x) dx$.

Proposition 1.3.5 Soit $f:[a,b[\longrightarrow \mathbb{R},\ b\in \mathbb{R}\ une\ fonction\ localement\ intégrable.\ On$ suppose qu'il existe γ , $\gamma < 1$ et un réel l tel que

$$\lim_{t \to b} (b - t)^{\gamma} f(t) = l$$

alors $\int_a^b f(t)dt$ converge.

Dans le cas où $\gamma \geq 1$ et $l \neq 0$, alors l'intégrale n'existe pas ou est divergente.

Proposition 1.3.6 Soit $f:[a,+\infty[$ une fonction localement intégrable. On suppose qu'il existe γ , $\gamma > 1$ et un réel l tels que

$$\lim_{t \to +\infty} t^{\gamma} f(t) = l.$$

Alors $\int_a^{+\infty} f(t)dt$ est convergente.

Dans le cas où $\gamma \leq 1$ et $l \neq 0$ alors l'intégrale $\int_a^{+\infty}$ n'existe pas.

Exercice 1.3.5 Montrer que l'intégrale converge $\int_{-\infty}^{+\infty} e^{-t^2} dt$.

Solution 1.3.5:

La fonction étant paire, il suffit d'étudier la convergence en $+\infty$. On a pour tout $t \ge$ $1, t^2 \ge t$ et

$$F(x) = \int_0^x e^{-t^2} dt = \int_0^1 x e^{-t^2} dt + \int_1^x x e^{-t^2} dt$$

$$\leq \int_0^1 x e^{-t^2} dt + \int_1^x x e^{-t} dt \leq \int_0^1 x e^{-t^2} dt + 1.$$

La fonction étant positive, il en résulte que F est croissante et majorée, elle admet donc une limite en $+\infty$.

Exercice 1.3.6 Calculer l'intégrale de Bertrand

$$\int_{\epsilon}^{+\infty} \frac{dx}{x^{\alpha} (\ln x)^{\beta}}.$$

Solution 1.3.6 Soit β un réel quelconque. Si $\alpha > 1$, $\lim_{x \longrightarrow +\infty} x^{\frac{\alpha+1}{2}} \frac{1}{x^{\alpha} \ln^{\beta} x} = 0$ donc d'après la proposition précédente $\int_{e}^{+\infty} \frac{dx}{x^{\alpha} (\ln x)^{\beta}}$ converge car $\frac{\alpha+1}{2} > 1$.

Si $\alpha < 1$, $\lim_{x \to +\infty} x^{\frac{\alpha+1}{2}} \frac{1}{x^{\alpha} \ln^{\beta} x} = +\infty$ donc d'après la proposition précédente $\int_{e}^{+\infty} \frac{dx}{x^{\alpha} (\ln x)^{\beta}}$ diverge car $\frac{\alpha+1}{2} \leq 1$. Si $\alpha = 1$, on $\int_{e}^{+\infty} \frac{dt}{x \ln^{\beta} x} dx$ converge si $\beta > 1$. En conclusion $\int_{e}^{+\infty} \frac{dx}{x^{\alpha} (\ln x)^{\beta}}$ converge

$$\iff \left\{ \begin{array}{l} \alpha > 1, \ \beta \in \mathbb{R} \\ \alpha = 1, \ \beta > 1 \end{array} \right.$$

Convergence absolue et Semi-convergence 1.4

Définition 1.4.1 Soit f une fonction numérique localement intégrable sur un intervalle de la forme I = [a, b]. On dit que l'intégrale de f sur I est **absolument convergente** si l'intégrale $\int_a^b |f(t)| dt$ est convergente.

Exercice 1.4.1 Pour $\alpha > 1$, $\int_{\pi}^{\infty} \frac{\sin t}{t^{\alpha}} dt$ est absolument convergente.

Solution ?? $(|\frac{\sin t}{t^{\alpha}}| \leq \frac{1}{t^{\alpha}})$ et $\int_{\pi}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge car $\alpha > 1$ donc $\int_{\pi}^{\infty} \frac{\sin t}{t^{\alpha}} dt$ est absolument convergente.

Proposition 1.4.1 Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction localement intégrable. Si l'intégrale de f est absolument convergente, alors l'intégrale de f est convergente.

Preuve. Puisque $\int_a^b |f| dx$ est convergente, $\forall \epsilon > 0, \exists \alpha > 0$ tels que $0 < b - y < \alpha$ et $0 < b - x < \alpha$ entraine $\left| \int_{x}^{y} |f(t)| dt \right| = \int_{x}^{y} |f(t)| dt < \epsilon \text{ donc } \left| \int_{x}^{y} f(t) dt \right| < \epsilon.$ ϵ étant quelconque $\int_a^b f(t)dt$ converge d'après le critère de Cauchy.

Définition 1.4.2 On dit que $\int_a^b f(t)dt$ est **semi-convergente** si elle est convergente sans être absolument convergente

Exercice 1.4.2 Montrer que les intégrales suivantes sont semi-convergentes :

a)
$$\int_{\pi}^{\infty} \frac{\cos x}{\sqrt{x}} dx$$
 b) $\int_{-1}^{\infty} \cos(x^2) dx (poser \ u = x^2, \ c) \int_{\pi}^{\infty} x^2 \sin(x^4) dx$.

Solution 1.4.2

a)
$$\int_{-\pi}^{\infty} \frac{\cos x}{\sqrt{x}} dx = \left[\frac{\sin x}{\sqrt{x}} \right]_{\pi}^{+\infty} + \frac{1}{2} \int_{-\pi}^{\infty} \frac{\sin x}{x^{3/2}} dx.$$

Or on a $\frac{\sin x}{x^{3/2}} \le 1/x^{3/2}$. Comme $\int_{-\pi}^{\infty} \frac{1}{x^{3/2}} dx$ converge donc $\int_{-\pi}^{\infty} \frac{\sin x}{x^{3/2}} dx$ converge. Par suite $\int_{\pi}^{\infty} \frac{\cos x}{\sqrt{x}} dx$. Pour montrer qu'elle ne converge pas absolument, on peut utiliser l'inégalité $|\cos x| \ge \cos^2 x = \frac{1+\cos 2x}{2}$. Alors

$$\int_{\pi}^{\infty} \frac{|\cos x|}{\sqrt{x}} dx \ge \int_{\pi}^{x} \frac{1 + \cos 2t}{2\sqrt{t}} dt = \underbrace{\int_{\pi}^{x} \frac{dt}{2\sqrt{t}}}_{\text{diverge}} + \underbrace{\int_{\pi}^{x} \frac{\cos 2t \ dt}{2\sqrt{t}}}_{\text{converge}}$$

Donc

$$\int_{\pi}^{\infty} \frac{|\cos x|}{\sqrt{x}} dx \text{ est divergente.}$$

Exercice 1.4.3 Montrer que pour $0 < \alpha \le 1$ l'intégrale $\int_1^{+\infty} \frac{\sin t}{t^{\alpha}}$ est semi-convergente.

Solution 1.4.3: Les intégrales $\int_1^{+\infty} \frac{\sin t}{t^{\alpha}}$ sont convergentes pour $\alpha > 0$. Comme pour $t \ge 1$ et $0 < \alpha \le 1$, on a $\left|\frac{\sin t}{t^{\alpha}}\right| \ge \left|\frac{\sin t}{t}\right|$ qui résulte du fait que $t \ge t^{\alpha}$, il suffit de montrer que $\int_1^{+\infty} \frac{\sin t}{t} dt$ est semi convergente.

Soit $(x_n)_{n\in\mathbb{N}^*}$ définie par : $\forall n\geq 1,\ x_n=n\pi$.

Pour $n_g eq1$, le changement de variable $t = n\pi + u$ nous donne

$$\int_{n\pi}^{(n+1)\pi} \left| \frac{\sin t}{t} \right| dt = \int_0^{\pi} \frac{\sin u}{n\pi + u} du \ge \frac{1}{(n+1)\pi} \int_0^{\pi} \sin u du = \frac{2}{(n+1)\pi}$$

et $\sum_{n=1}^{+\infty} \int_{n\pi}^{(n+1)\pi} \left| \frac{\sin t}{t} \right| dt = +\infty$, ce qui entraine la divergence de $\int_{1}^{+\infty} \left| \frac{\sin t}{t} \right| dt$.

Exemple 1.4.1 Exemple d'intégrale semi-convergente

$$I = \int_{1}^{\infty} \frac{\sin t}{t} dt$$

En faisant une intégration par parties on a :

$$I = \int_{1}^{\infty} \frac{d(\cos t)}{t} dt = -\frac{\cos t}{t} \Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{\cos t}{t^{2}} dt$$
$$= -\cos 1 + \int_{1}^{+\infty} \frac{\cos t}{t^{2}} dt$$

or $|\frac{\cos t}{t^2}| \leq \frac{1}{t^2}$ et $\int_1^{+\infty} \frac{dt}{t^2}$ converge donc $\int_1^{+\infty} |\frac{\cos t}{t^2}| dt$ converge parsuite $\int_1^{+\infty} \frac{\cos t}{t^2} dt$ est convergente donc $I = \int_1^{\infty} \frac{\sin t}{t} dt$ est convergente. Montrons dans ce qui suit que I n'est pas absolument convergente. Nous allons montrer

que I ne vérifie pas le critère de Cauchy.

Pour tout $k \ge 0$ on a

$$\int_{k\pi}^{(k+1)\pi} |\frac{\sin t}{t}| dt = \int_0^{\pi} \frac{\sin t}{t + k\pi} dt \text{ on pose } t = t - k\pi$$

$$\ge \frac{1}{(k+1)\pi} \int_0^{\pi} \sin t dt \ge \frac{2}{(k+1)\pi}$$

donc

$$\int_{k\pi}^{(2k+2)\pi} \left| \frac{\sin t}{t} \right| dt = \int_{k\pi}^{(k+1)\pi} \left| \frac{\sin t}{t} \right| dt + \int_{(k+1)\pi}^{(k+2)\pi} \left| \frac{\sin t}{t} \right| dt + \dots + \int_{(2k+1)\pi}^{(2k+2)\pi} \left| \frac{\sin t}{t} \right| dt$$

$$= \int_{0}^{\pi} \frac{\sin t}{t + k\pi} dt + \int_{0}^{\pi} \frac{\sin t}{t + (k+1)\pi} dt + \dots + \int_{0}^{\pi} \frac{\sin t}{t + (2k+2)\pi} dt$$

$$\geq \frac{2}{(k+1)\pi} + \frac{2}{(k+2)\pi} + \dots + \frac{2}{(2k+2)\pi} \geq \frac{2(k+1)}{(2k+2)\pi} = \frac{1}{\pi}$$

Soit $\epsilon = \frac{1}{\pi}$, $\forall A > 0, \exists k \in \mathbb{N}, k\pi > A$ et on a

$$\int_{k\pi}^{(2k+2)\pi} |\frac{\sin t}{t}| dt \ge \epsilon$$

donc

$$I = \int_{1}^{+\infty} |\frac{\sin t}{t}| dt$$

ne vérifie pas le critère de Cauchy.

1.4.1 Critère d'Abel

Soient f et g deux fonctions numériques définies sur $[a, +\infty[$ telles que :

- 1) $\int_a^{+\infty} f(t)dt$ converge.
- 2) g monotone et bornée c'est à dire il existe L > 0 tel que $|g(x)| \le L$, $\forall x \in [a, +\infty[$ Alors $\int_a^{+\infty} f(t)g(t)dt$ converge.

Proposition 1.4.2 Deuxième formule de la moyenne

Soient $f, g : [\alpha, \beta] \longrightarrow \mathbb{R}$ deux fonctions intégrables sur $[\alpha, \beta]$. On suppose f décroissante et positive.

Alors il existe $c \in [\alpha, \beta]$ tel que

$$\int_{\alpha}^{\beta} f(t)g(t)dt = f(\alpha + 0) \int_{\alpha}^{c} g(t)dt$$

 $o\dot{u} f(\alpha + 0) = \lim_{t \to \alpha} f(t)$

Proposition 1.4.3 Critère d'Abel

Soient $f, g: [a, +\infty] \longrightarrow \mathbb{R}$ deux fonctions localement intégrables. On suppose

- 1. f est positive, décroissante et tend vers zéro quand t tend vers $+\infty$
- 2. Il existe $M \in \mathbb{R}$, M > 0 tel que $\forall u, v \in [a, +\infty[, \left| \int_{u}^{v} g(t) dt \right| \leq M$.

Alors $\int_a^{+\infty} f(t)g(t)dt$ est convergente.

Preuve. Soit $\epsilon > 0$, puisque f(t) tend vers zéro lorsque t tend vers l'infini, il existe A, quel que soit t > A $0 \le f(t) \le \frac{\epsilon}{M}$.

Soient u, v tels que $A \le u \le v$, d'après la formule de la moyenne il existe $c \in [u, v]$ tel que $\int_u^v f(t)g(t)dt = f(u+0)\int_u^c g(t)dt$ donc

$$\left| \int_{u}^{v} f(t)g(t)dt \right| = f(u+0) \left| \int_{u}^{c} g(t)dt \right|$$

$$\leq f(u+0)M \leq \frac{\epsilon}{M}M = \epsilon$$

 ϵ étant quel
conque donc $\int_a^{+\infty} f(t)g(t)dt$ vérifie le critère de Cauchy.
 \blacksquare

Exercice 1.4.4 Montrer en utilisant le critère D'Abel que $\int_{\pi}^{+\infty} \frac{\cos x}{\sqrt{x}} dx$ converge.

1.4.2 Critère de Dirichlet

Proposition 1.4.4 Soit f une fonction localement intégrable sur $[A, +\infty[$ telle que :

1. Il existe
$$k > 0$$
, $\left| \int_a^A f(t)dt \right| \le k \forall A \in [a, +\infty[$.

2. g tend vers zéro de façon monotone quand $x \to \infty$.

Alors
$$\int_{a}^{+\infty} f(t)g(t)dt$$

Remarque 1.4.1 Le critère de Dirichlet entraine celui d'Abel.

Remarque 1.4.2 - $Si \lim_{x \to +\infty} f(x) = l \text{ réel non nul ou } +\infty \text{ ou } -\infty \text{ alors } \int_a^{+\infty} f(t) dt$ diverge.

- $Si \lim_{x \to +\infty} f(x) = 0$ ou n'existe pas on ne peut rien dire quant à la nature de l'intégrale.

1.5Exercices

Exercice 1.5.1 Etudier la nature de l'intégrale généralisée

1)
$$\int_0^{+\infty} (x+2-\sqrt{x^2+4x+1}) dx$$

2) $\int_0^{+\infty} (\sqrt[3]{x^3+1}-\sqrt{x^2+1}) dx$

$$(2)\int_0^{+\infty} (\sqrt[3]{x^3+1} - \sqrt{x^2+1}) dx$$

$$(3)\int_0^{+\infty} ((x+1)^{\frac{1}{x+1}} - x^{\frac{1}{x}}) dx$$

4)
$$\int_0^{+\infty} \frac{\sin x}{x^{\alpha}} dx$$

$$5) \int_0^{+\infty} \frac{\cos x}{x^{\alpha}} dx$$

$$6) \int_0^{+\infty} \frac{\sin x dx}{x^{\alpha} (1+x^{\beta})}$$

1) $\int_{0}^{1} (x + 2) \sqrt{x^{2} + 1} dx$ 2) $\int_{0}^{+\infty} (\sqrt[3]{x^{3} + 1} - \sqrt{x^{2} + 1}) dx$ 3) $\int_{0}^{+\infty} ((x + 1)^{\frac{1}{x+1}} - x^{\frac{1}{x}}) dx$ 4) $\int_{0}^{+\infty} \frac{\sin x}{x^{\alpha}} dx$ 5) $\int_{0}^{+\infty} \frac{\cos x}{x^{\alpha}} dx$ 6) $\int_{0}^{+\infty} \frac{\sin x dx}{x^{\alpha}(1+x^{\beta})}$ Solution 1.5.1 : 1) En multipliant par l'expression conjuguée on a : $x + 2 - \sqrt{x^{2} + 4x + 1} = \frac{3}{x + 2 + \sqrt{x^{2} + 4x + 1}} \sim_{x \to +\infty} \frac{3}{2x}$ donc diverge car l'intégrale $\int_{0}^{+\infty} \frac{3}{2x} dx$

2) $\sqrt[3]{x^3+1} - \sqrt{x^2+1} = x((1+\frac{1}{x^3})^{1/3} - (1+\frac{1}{x^2})^{1/2}) \sim_{x\to+\infty} -\frac{1}{2x}$ Donc l'intégrale est

divergente.
3)
$$x^{\frac{1}{x}} = e^{\frac{\ln x}{x}} = 1 + \frac{\ln x}{x} + O((\frac{\ln x}{x})^2)$$

De même on $a (x+1)^{\frac{1}{x+1}} = e^{\frac{\ln(x+1)}{x+1} = e^{\frac{\ln x + \ln(1+1/x)}{x(1+1/x)}}} \sim e^{\frac{\ln x}{x}} = 1 + \frac{\ln x}{x} + O((\frac{\ln x}{x})^2)$

Donc $(x+1)^{\frac{1}{x+1}} - x^{\frac{1}{x}} = O((\frac{\ln x}{x})^2)$ d'où l'intégrale converge.

 $4) \int_0^{+\infty} \frac{\sin x}{x^{\alpha}} dx \text{ on a donc deux points de singularités } 0 \text{ et } +\infty.$ $Au \text{ voisinage de zéro } \frac{\sin x}{x^{\alpha}} \sim \frac{1}{x^{\alpha-1}}. \text{ Or } \int_0^c \frac{1}{x^{\alpha-1}} dx \text{ converge si } \alpha - 1 < 1 \text{ d'après le critère de Riemann. Donc l'intégrale converge au voisinage de zéro si } \alpha < 2$ $Au \text{ voisinage de } +\infty \text{ on a } |\frac{\sin x}{x^{\alpha}}| \leq \frac{1}{x^{\alpha}} \text{ Comme } \int_c^{+\infty} \frac{1}{x^{\alpha}} dx \text{ converge si } \alpha > 1 \text{ alors } \int_c^{+\infty} \frac{\sin x}{x^{\alpha}} dx \text{ est aussi convergent pour } \alpha > 1.$ $Pour 0 \leq \alpha \leq 1 \text{ on a greel gree soit } x \text{ et } x \in \mathbb{R}^v \text{ sin } x dx | x \in \mathbb{R}^v \text{ sin } x dx | x \in \mathbb{R}^v \text{ on a greel gree soit } x \text{ et } x \in \mathbb{R}^v \text{ sin } x dx | x \in \mathbb{R}^v \text{ sin } x dx | x \in \mathbb{R}^v \text{ sin } x dx | x \in \mathbb{R}^v \text{ on a greel gree soit } x \text{ et } x \in \mathbb{R}^v \text{ sin } x dx |$

Pour $0 < \alpha \le 1$ on a quel que soit u et v $6 \int_u^v \sin x dx | < 2$ et la fonction $\frac{1}{x\alpha}$ est positive décroissante et tend vers zéro quand n tend vers l'infini. D'après le lemme d'Abel $\int_{c}^{+\infty} \frac{\sin x}{x^{\alpha}} dx \ est \ convergente.$

En concluion : $\int_0^c \frac{\sin x}{x^{\alpha}} dx$ converge si $\alpha < 2$ et $\int_c^{+\infty} \frac{\sin x}{x^{\alpha}} dx$ converge si $\alpha > 0$. Donc $\int_0^{+\infty} \frac{\sin x}{x^{\alpha}} dx \ converge \ si \ 0 < \alpha \le 2.$

Exercice 1.5.2 Déterminer la nature de l'intégrale impropres $\int_0^{+\infty} \frac{\sin^2 x}{x^3}$

Solution 1.5.2 Pour étudier la convergence de l'intégrale nous allons étudier la convergen ce des deux intégrales suivantes

$$\int_0^1 \frac{\sin^2 x}{x^3} \text{ et } \int_1^{+\infty} \frac{\sin^2 x}{x^3} dx$$

 $\begin{array}{l} \int_0^1 \frac{\sin^2 x}{x^3} \ \text{et} \ \int_1^{+\infty} \frac{\sin^2 x}{x^3} dx \\ \text{Au voisinage de zéro on a} \\ \frac{\sin^2 x}{x^3} \sim \frac{1}{x} \ \text{donc d'après le critère de Riemann l'intégrale} \ \int_0^1 \frac{\sin^2 x}{x^3} \ \text{diverge.} \end{array}$

Pour tout $x \in [1, +\infty[$ on a $\frac{\sin^2 x}{x^3} \le \frac{1}{x^3}$ donc d'après le critère de comparaison comme $\int_0^1 \frac{\sin^2 x}{x^3}$ est convergente alors $\int_1^{+\infty} \frac{\sin^2 x}{x^3} dx$ converge.

Comme la première est divergente donc $\int_0^{+\infty} \frac{\sin^2 x}{x^3}$ est divergente.

Exercice 1.5.3 Etudier la convergence des deux intégrales $I = \int_0^{\pi/2} \ln \sin x dx$ et J = $\int_0^{\pi/2} \ln \cos x dx$. Calculer I et J.

Solution 1.5.3 : Etude de I

O est le seul point de singularité. Au voisinage de zéro on a $\sin x \sim x$ donc $\ln \sin x \sim \ln x$

Donc $\int_0^{\pi/2} \ln \sin x dx$ est de même nature que $\int_0^{\pi/2} \ln x dx$.

En faisant une une intégration par partie avec

$$u = \ln x$$
, $du = \frac{1}{x}dx$ et $dv = dx$, $v = x$ on a

$$\int_{t}^{\pi/2} \ln x dx = \left[x \ln x \right]_{t}^{\pi/2} - \int_{t}^{\pi/2} dx = \frac{\pi}{2} \ln \frac{\pi}{2} + t - t \ln t$$

 $\int_t^{\pi/2} \ln x dx = [x \ln x]_t^{\pi/2} - \int_t^{\pi/2} dx = \frac{\pi}{2} \ln \frac{\pi}{2} + t - t \ln t$ Lorsque t tend vers 0 $\int_t^{\pi/2} \ln x dx$ admet une limite finie. Donc $\int_0^{\pi/2} \ln x dx$ converge par suite I converge.

Pour l'intégrale ${\cal J}$ faisons le changement de variable

Tour Timegrate J raisons le changement de variable $t=\frac{\pi}{2}-x,\ dt=dx$ si $x=0,\ t=\frac{\pi}{2}; x=\frac{\pi}{2},\ t=0$ $J=\int_0^{\pi/2}\ln\cos x dx=\int_0^{\pi/2}\ln\sin x dx=I$ Comme I converge par suite J converge et on a I=J. $I+J=\int_0^{\pi/2}\ln\sin x dx+\int_0^{\pi/2}\ln\cos x dx=\int_0^{\pi/2}\ln(\sin x\cos x) dx=\int_0^{\pi/2}\ln(\frac{1}{2}\sin 2x) dx=\int_0^{\pi/2}(\ln\sin 2x-\ln 2) dx$ Posons $t=2x,\ dt=2dx$ d'où $I+J=\frac{1}{2}\int_0^{\pi}\ln\sin t dt-\frac{\pi\ln 2}{2}=I-\frac{\pi\ln 2}{2}$ par suite on a

$$I = J = -\frac{\pi \ln 2}{2}$$

Exercice 1.5.4 Calculer les intégrales généralisées

A)
$$\int_0^{+\infty} \frac{x dx}{x^3 + x^2 + x + 1}$$
 B) $\int_0^{+\infty} \frac{dx}{x^3 + 1}$

Solution 1.5.4

A) Nous allons faire une décomposition en élémente simples $x^3+x^2+x+1=(x+1)(x^2+1)$ donc le rapport $\frac{xdx}{x^3+x^2+x+1} = \frac{ax+b}{x^2+1} + \frac{c}{x+1}$ En identifiant on a a=1/2, b=1/2, c=-1/2 Soit X > 1

$$\int_0^X \frac{x dx}{x^3 + x^2 + x + 1} = \frac{1}{2} \int_0^X \frac{(x+1)dx}{x^2 + 1} - \frac{1}{2} \int_0^X \frac{dx}{x+1}$$
$$= \frac{1}{2} (\frac{1}{2} \ln(X^2 + 1) - \frac{1}{2} \ln 2 + arctgX - \frac{\pi}{4} - \ln(X+1) + \ln 2$$

En prenant la limite lorsque $X \longrightarrow +\infty$ on a $A) = \frac{1}{4} \ln 2 + \frac{\pi}{8}$

Exercice 1.5.5 Soient $f, g, h : [1; +\infty[\longrightarrow \mathbb{R}_+ \ des \ fonctions \ localement \ intégrables \ sur [1, +\infty[.$

Montrer que $\int_1^{+\infty} \sqrt[3]{fgh}$ converge.

Solution 1.5.5

On sait que les fonctions f, g et h sont tous positives.

- $0 \le f \le \max(f, g, h)$
- $0 \le g \le \max(f, g, h)$
- $0 \le h \le \max(f, g, h)$ En faisant le produit membre à membre et en prenant la racine cubique nous avons directement
- $0 \le \sqrt[3]{fgh} \le \max(f,g,h) \le f+g+h$. Comme les fonctions f,g et h sont localements intégrables l'intégrale $\int_1^{+\infty} \sqrt[3]{fgh}$ converge.

Exercice 1.5.6 Fonction Γ

- 1) Montrer que pour tout $\alpha \in]0, +\infty[$, l'intégrale
- $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} \exp(-t) \ existe.$
- 2) Former une relation de récurrence entre $\Gamma(\alpha)$ et $\Gamma(\alpha+1)$ pour $\alpha \in]0,+\infty[$
- 3) En déduire $\Gamma(n)$ pour tout $n \in \mathbb{N}$

Solution 1.5.6

1)Les deux points de singularités sont 0 et $+\infty$ donc il suffit d'étudier la convergence des deux intégrales $\int_0^2 t^{\alpha-1} \exp(-t)$ et $\int_2^{+\infty} t^{\alpha-1} \exp(-t)$

Au voisinage de zéro on a

 $t^{\alpha-1} \exp(-t) \sim_0 t^{\alpha-1} \operatorname{donc} \int_0^2 t^{\alpha-1} \exp(-t) \operatorname{converge si} 1 - \alpha < 1 \operatorname{ie} \alpha > 0.$

Au voisinage de $+\infty$ on a $\lim_{t\to+\infty} t^2(t^{\alpha-1}e^{-t}) = 0$ comme 2>1 alors $\int_2^{+\infty} t^{\alpha-1} \exp(-t)$ converge d'après une proposition du cours.

Donc $\Gamma(\alpha)$ existe pour tout $\alpha > 0$.

2) En posant $u=t^{\alpha-1}$, $du=(\alpha-1)t^{\alpha-2}$ et $dv=e^{-t}$, $v=-e^{-t}$ $\Gamma(\alpha)$ devient

$$\Gamma(\alpha) = [-t^{\alpha-1}e^{-t}]_0^{+\infty} + (\alpha - 1) \int_0^{+\infty} t^{\alpha-2} \exp(-t)dt$$

$$= (\alpha - 1) \int_0^{+\infty} t^{(\alpha - 1) - 1} \exp(-t) dt = (\alpha - 1) \Gamma(\alpha - 1)$$

donc

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

3) prenons $\alpha = n$ donc $\Gamma(n) = (n-1)\Gamma(n)$ ainsi on obtient $\Gamma(n) = (n-1)(n-2)\dots(n-(n-2))(n-(n-1))\Gamma(1) = (n-1)$ — car $\Gamma(1) = 1$.

Exercice 1.5.7 1) Pour quelles valeurs des entiers n et p, l'intégrale $\int_e^{+\infty} \frac{dx}{x^p(\ln x)^n}$ existe-

2) Montrer que l'intégrale $\int_1^{+\infty} \frac{dx}{(x-\cos\theta)\sqrt{x^2-1}}$, $\theta \neq k\pi$ avec $k \in \mathbb{Z}$, existe.

Solution 1.5.7

1) $1^{er}cas$ Si p=0 l'intégrale devient $\int_e^{+\infty} \frac{dx}{(\ln x)^n}$ qui est divergente car

 $2^{em}cas \text{ Si } p = 1. \text{ Soit } X > e$ $-n = 1 \text{ alors on a } \int_e^X \frac{dx}{x \ln x} = [\ln(\ln x)]_e^X = \ln(\ln X) \text{ qui tend vers } +\infty \text{ lorsque } X \text{ tend vers } +\infty. \text{ Donc l'intégrale } \int_e^{+\infty} \frac{dx}{x \ln x} \text{ ne converge pas.}$

-Si $n \ge 2$ faisons le changement de variables $x = e^t$ $\int \frac{dx}{x(\ln x)^n} = \int \frac{dt}{t^n} = \frac{1}{1-n} \cdot \frac{1}{t^{n-1}} + k = \frac{1}{1-n} \frac{1}{(\ln x)^{n-1}} + k \text{ Donc l'intégrale}$ $\int_e^X \frac{dx}{x(\ln x)^n} = \left[\frac{1}{1-n} \frac{1}{(\ln x)^{n-1}}\right]_e^X \longrightarrow \frac{1}{1-n}, \text{ lorsque } X \to +\infty \text{ donc l'intégrale } \int_e^{+\infty} \frac{dx}{x(\ln x)^n}$ converge.

 $3^{em} cas \ p \ge 2$

Si n=0 alors $\frac{1}{(\ln x)^n}=1$ donc l'intégrale $\int_e^{+\infty}\frac{dx}{x^p}$ converge d'après l'intégrale de Riemann

Si non $\frac{1}{(\ln x)^n}$ tend vers zéro quand n tend vers l'infini. Donc il existe $A \geq e$ tel que $\frac{1}{(\ln x)^n} \leq 1$ pour tout $x \geq A \geq e$. Donc quelque soit $x \geq A$ on a $\frac{1}{x^p(\ln x)^n} \leq \frac{1}{x^p}$.

Donc l'intégrale $\int_e^{+\infty} \frac{1}{x^p (\ln x)^n}$ converge d'après le critère de Riemann.

Donc en conclusion $\int_e^{+\infty} \frac{1}{x^p (\ln x)^n}$ existe si

 $+p = 1, n \ge 2$

 $p > 2, n \in \mathbb{N}.$

2)On a deux points de singularités 1 et $+\infty$ nous allons donc étudier séparément les deux intégrales

$$I_1 = \int_1^2 \frac{dx}{(x - \cos \theta)\sqrt{x^2 - 1}}$$

et

$$I_2 = \int_2^{+\infty} \frac{dx}{(x - \cos \theta)\sqrt{x^2 - 1}}$$

Pour la première intégrale on a

$$(x-1)^{1/2} f(x) = \frac{1}{(x-\cos\theta)\sqrt{x+1}} \to \frac{1}{\sqrt{2}(x-\cos\theta)}$$

qui converge d'après une proposition du cours pour tout $\theta \neq k\pi$ Pour la deuxème intégrale on a

$$x^{2}f(x) = x^{2} \cdot \frac{1}{(x - \cos \theta)\sqrt{x^{2} - 1}} = \frac{x^{2}}{x^{2}(1 - \frac{\cos \theta}{x})\sqrt{1 - \frac{1}{x^{2}}}}, \ x \ge 2$$

Donc $x^2 f(x) \longrightarrow 1$ si $x \to +\infty$ Donc l'intégrale généralisée I_2 existe. Par suite l'intégrale généralisée I converge.

Exercice 1.5.8 Etudier la convergence des intégrales suivantes :

1)
$$\int_0^{+\infty} \frac{dt}{|\sin \pi t|^{1/2} (1+t^2)}$$

2) $\int_0^{+\infty} \frac{\cos t}{\sqrt{t} + \sin t} et \int_0^{+\infty} \frac{\sin t}{\sqrt{t} + \sin t}$

Solution 1.5.8

1)
$$\int_0^{+\infty} \frac{dt}{|\sin \pi t|^{1/2}(1+t^2)} = \sum_{n\geq 0} \int_n^{n+1} \frac{dt}{|\sin \pi t|^{1/2}(1+t^2)}$$

Posons $u_n = \int_n^{n+1} \frac{dt}{|\sin \pi t|^{1/2}(1+t^2)} = \int_0^1 \frac{dt}{|\sin \pi t|^{1/2}(1+(n+t)^2)}$

$$f(t) = \frac{1}{|\sin \pi t|^{1/2} (1 + (n+t)^2)} \sim_{t \to 0} \frac{1}{(1 + (n+t)^2)|\sin \pi t|^{1/2}}$$

donc intégrable en 0.

 $f(t) \sim_{t \longrightarrow 1} \frac{1}{(1+(n+t)^2)\pi^{1/2}} \frac{1}{\sqrt{1-t}}$ donc intégrable en 1 par suite u_n existe $\forall n \in \mathbb{N}$.

Exercice 1.5.9 Déterminer la nature de l'intégrale

$$\int_0^{+\infty} \frac{x^a}{1+x^b} dx, \ (a,b) \in \mathbb{R}^2$$

Solution 1.5.9 : 0 et $+\infty$ sont les deux points de singularités. Au voisinage de 0^+

$$\frac{x^a}{1+x^b} \sim_{0^+} \begin{cases} x^a & \text{si } b > 0\\ \frac{x^a}{2} & \text{si } b = 0\\ x^{a-b} & \text{si } b < 0 \end{cases}$$

Au voisinage de $+\infty$

$$\frac{x^a}{1+x^b} \sim_{+\infty} \begin{cases} x^{a-b} & \text{si } b > 0\\ \frac{x^a}{2} & \text{si } b = 0\\ x^a & \text{si } b < 0 \end{cases}$$

Il ya convergence si et seulement si (a+1)(a-b+1) < 0.

Exercice 1.5.10 On cherche à étudier par plusieurs manières différentes la nature de l'intégrale $I = \int_0^{+\infty} \frac{t \sin t}{t^2 + 1} dt$

- a) Etudier la monotonie de la fonction $f(t) = \frac{t}{t^2+1} \sup [1, +\infty[$.
- En déduire la nature de I. Enoncer clairement le résultat utilisé.
- b) Retrouver le résultat précédent en faisant une intégration par parties sur $\int_0^X \frac{t \sin t}{t^2+1} dt$
- c) Réduire au même dénominateur l'expression $\frac{t \sin t}{t^2+1} \frac{\sin t}{t}$ et en déduire une troisième manière de retrouver le même résultat.

Solution 1.5.10

La fonction $h(t) = \frac{t \sin t}{t^2 + 1}$ est localement intégrable sur $[0, +\infty[$.

La dérivée de la fonction f s'écrit $f'(x) = \frac{1-t^2}{(t^2+1)^2} \le 0$ sur $[1, +\infty[$. Donc f est décroissante. De pllus f est positive et tend vers zéro lorsque t tend vers $+\infty$.

Pour tout $u, v \in [1, +\infty[$ $\int_u^v \sin t dt \le 2$. D'après le critère d'Abel pour les intégrales généralisées l'intégrale $I = \int_0^{+\infty} \frac{t \sin t}{t^2 + 1} dt$ converge.

b) Posons $u(t) = \frac{t}{t^2+1}$, $v'(t) = \sin t$ donc $u'(t) = \frac{1-t^2}{(t^2+1)^2}$, $v(t) = -\cos t$

$$\int_0^X \frac{t \sin t}{t^2 + 1} dt = \frac{-X \cos X}{X^2 + 1} + \int_0^X \frac{(1 - t^2) \cos t}{(1 + t^2)^2} dt$$

Cette intégrale converge car $\left|\frac{(1-t^2)\cos t}{(1+t^2)^2}\right| \leq \frac{1}{(1+t^2)^2}$ c) $\frac{t\sin t}{t^2+1} - \frac{\sin t}{t} = -\frac{\sin t}{t(t^2+1)} \Longrightarrow \frac{t\sin t}{t^2+1} = \frac{\sin t}{t} - \frac{\sin t}{t(t^2+1)}$ $\int_0^\infty \frac{\sin t}{t} dt$ converge d'après le critère d'Abel. $\left|-\frac{\sin t}{t(t^2+1)}\right| \leq \frac{1}{t^3}$ et comme $\int_1^{+\infty} \frac{dt}{t^3}$ converge donc $\int_1^{+\infty} -\frac{\sin t}{t(t^2+1)}$ con verge d'oú la convergence de I.

Exercice 1.5.11 1) Etudier la convergence de l'intégrale $\int_0^{+\infty} \frac{1}{t^{\beta}} dt$ et énoncer le critère de Riemann pour les intégrales généralisées

2) Pour $x \in]0,1]$, soit $f_{\alpha}(x) = \frac{\ln x}{\ln^{\alpha}(1+x)}$, $\alpha \in \mathbb{R}$. Etudier suivant les valeurs de α la convergence de l'intégrale

$$\int_0^1 f_{\alpha}(x) dx$$

3) Si $\alpha > 0$ étudier la nature de $\int_0^\infty e^{-x^{\alpha}} dx$

Solution 1.5.11

0 est le seul point de singularités. Pour tout $x \in]0,1]$ $f_{\alpha}(x) \leq 0$. f garde donc un signe constant on peut utiliser le critre d'équivalence. $f_{[}\alpha(x) \sim_0 x^{-\alpha} \ln x$ donc les intégrales $\int_0^1 x^{-\alpha} \ln x$ et $\int_0^1 f_{\alpha}(x) dx$ sont de même natures.

Pour $\alpha < 0$ f_{α} se prolonge par continuité en 0. donc $\int_{0}^{1} f_{\alpha}(x) dx$ converge.

Si $0 \le \alpha < 1$ et soit $\beta \in]\alpha, 1[$ donc $x^{\beta}g_{\alpha}(x) = x^{\beta-\alpha} \ln x \xrightarrow{x \to 0^+} 0$ donc il existe A > 0 tel que $x^{-\alpha} \ln x \leq \frac{A}{x^{\beta}}$ pour tout $x \in]0,1]$ Comme $\int_0^1 \frac{dx}{x^{\beta}} dx$ converge donc $\int_0^1 x^{-\alpha} \ln x dx$ converge ce qui entraine $\int_0^1 f_{\alpha}(x) dx$ converge.

Si $\alpha=1$ par une intégration on montre que $\int_X^1 \frac{\ln x}{x} dx$ tend vers l'infini lorsque X tend

vers zéro. D'où la divergence de $\int_0^1 f_{\alpha}(x) dx$ Si $\alpha > 1$ $|f_{\alpha}| = \frac{|\ln x|}{\ln^{\alpha}(1+x)} \ge \frac{|\ln x|}{\ln(1+x)}$ et donc $\int_0^1 f_{\alpha}$ diverge. 3)Pour tout réel $\lambda > 0$, $x^{\lambda}e^{-x^{\alpha}} \longrightarrow 0$ lorsque x tend vers l'infini. Il existe A > 0 et un $\lambda > 1$ tels que $\forall x \ge 1$, $e^{-x^{\alpha}} \le \frac{A}{x^{\lambda}}$. Comme $\int_1^{+\infty} \frac{dx}{x^{\lambda}}$ converge donc par le théorème de comparaison $\int_1^{+\infty} e^{-x^{\alpha}} \Longrightarrow \int_0^{+\infty} e^{-x^{\alpha}}$

Exercice 1.5.12 1) Soit $\alpha \in \mathbb{R}$. Montrer que l'intégrale $\int_a^{+\infty} \frac{dt}{t \ln^{\alpha} t}$, a > 1 converge à l'infini si et seulement si $\alpha > 1$.

- 2) Montrer que $I = \int_0^1 \ln t dt$ est convergente à l'origine.
- 3) Soient α , $\beta \in \mathbb{R}$. Montrer que l'intégrale $\int_{2}^{+\infty} \frac{\ln^{\alpha} t}{t^{\beta}} dt$ est convergente si $\beta > 1$ ou si $\beta = 1$ et $\alpha < -1$ et divergente si $\beta < 1$ ou si $\beta = 1$ et $\alpha \geq -1$ 4) Montrer de la même manière qu'au (3) que l'intégrale $\int_0^{\frac{1}{2}} t^{\beta} |\ln t|^{\alpha} dt$ est convergente si $\beta > -1$, diverge $si \beta < -1.$

Solution 1.5.12

1)) En posant $x=\ln t$ l'intégrale devient $\int_{la}^{+\infty} \frac{dx}{x^{\alpha}}$ qui converge d'après le critère de Riemann si $\alpha > 1$. D'où le résultat.

2)

$$\lim_{x \to 0} \int_{x}^{1} \ln t dt = \lim_{x \to 0} \left[t \ln t - t \right]_{x}^{1} = -1.$$

3) a) Supposons $\beta > 1$ et soit γ un réel vérifiant $\beta > \gamma > 1$. On a

$$\lim_{t \to +\infty} \frac{t^{\gamma} \ln^{\alpha} t}{t^{\beta}} = \lim_{t \to +\infty} t^{\gamma - \beta} \ln^{\alpha} t = 0$$

b) Si $\beta > 1$, choisisons $\gamma \in \mathbb{R}$: $\beta < \gamma < 1$. On a alors

$$\lim_{t \to +\infty} \frac{t^{\gamma} \ln^{\alpha} t}{t^{\beta}} = \lim_{t \to +\infty} t^{\beta - \gamma} \ln^{\alpha} t = 0$$

et la divergence de l'intégrale $\int_2^{+\infty} \frac{dt}{t^{\gamma}}$ entraine celle de l'intégrale $\int_2^{+\infty} \frac{\ln^{\alpha} t}{t^{\beta}} dt$. c) Si $\beta = 1$, on fait le changement de variable $x = \ln t$ l'intégrale devient $\int_{\ln 2}^{+\infty} x^{\alpha} dx$ qui converge si $-\alpha > 1$ ie $\alpha < -1$ et diverge si $\alpha \ge -1$.

Exercice 1.5.13 Etudier la convergence des intégrales suivantes

$$I_{1} = \int_{0}^{\pi/2} \frac{dx}{\sqrt{\cos x}}, \ I_{2} = \int_{0}^{\pi/2} \frac{dx}{\ln x}$$
$$I_{3} = \int_{0}^{1} \frac{dx}{\arccos x} dx \ I_{4} = \int_{0}^{\pi/2} \cos x \ln(\tan x) dx$$

2) Soient $\alpha \geq \beta \geq 0$ deux réels positifs. Etudier la convergence de l'intégrale

$$I(\alpha, \beta) = \int_0^{+\infty} \frac{dx}{x^{\alpha} + x^{\beta}}$$

3) Etudier la convergence de l'intégrale

$$I_5 = \int_0^{+\infty} \frac{\cos x}{x^2 + 1} dx$$

4) A) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction positive et décroissante. Montrer que $\int_0^{+\infty} f(x) |\sin x| dx$

converge si et seulement si $\int_0^{+\infty} f(x)dx$ converge. B)Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^1 , positive et décroissante sur \mathbb{R}_+ et tendant vers zéro en $+\infty$. Montrer que $\int_0^{+\infty} f(x) \sin x dx$ converge

4) Etudier la convergence des deux intégrales

$$J_1 = \int_0^{+\infty} \frac{\sin x}{\sqrt{x}} dx \ J_2 = \int_0^{+\infty} \frac{\sin x}{\sqrt{x}} (1 + \frac{\sin x}{\sqrt{x}}) dx$$

Exercice 1.5.14 Soit $f:[1;+\infty[\longrightarrow \mathbb{R}_+ \ d\'{e}croissante\ positive\ telle\ que\ \int_1^{+\infty}f\ converge.$

a) Montrer $xf(x) \to 0$ lorsque $x \to +\infty$ b) Montrer que $\int_1^{+\infty} x(f(x) - f(x+1))dx$ converge et calculer sa valeur.

Exercice 1.5.15 Etudier la convergence et calculer les intégrales suivantes

1)
$$\int_0^{+\infty} \frac{\sin t}{1+t^2}$$
, 2) $\int \int_1^{+\infty} \frac{\cos t}{\sqrt{t}} dt$

Exercice 1.5.16 Etudier la nature de l'intégrale généralisée

1)
$$\int_{0}^{+\infty} (x+2-\sqrt{x^{2}+4x+1})dx, \quad 2) \int_{0}^{+\infty} (\sqrt[3]{x^{3}+1}-\sqrt{x^{2}+1})dx$$
3)(*)
$$\int_{0}^{+\infty} ((x+1)^{\frac{1}{x+1}}-x^{\frac{1}{x}})dx, \quad 4) \int_{0}^{+\infty} \frac{\sin x}{x^{\alpha}}dx$$
5)(*)
$$\int_{0}^{+\infty} \frac{\cos x}{x^{\alpha}}dx \quad 6$$
)(*)
$$\int_{0}^{+\infty} \frac{\sin xdx}{x^{\alpha}(1+x^{\beta})}$$

Exercice 1.5.17 Déterminer la nature de l'intégrale impropres $\int_0^{+\infty} \frac{\sin^2 x}{x^3}$

Exercice 1.5.18 Etudier la convergence des deux intégrales $I = \int_0^{\pi/2} \ln \sin x dx$ et J = $\int_0^{\pi/2} \ln \cos x dx$. Calculer I et J.

Exercice 1.5.19 1) Déterminer un équivalent de chacune des fonctions suivantes au point considéré

$$f(x) = \frac{(3x^2 + 4x^4)(2x + 5)}{3x^2 + 7x^7} \quad en \ 0 \ puis \ en \ + \infty$$
$$g(x) = \frac{x^2 - x - 1}{\sqrt{x - 2}} \quad en \ 2$$

Puis en déduire la nature de $\int_0^\infty f(t)dt$ et $\int_0^3 g(t)dt$

2) Etudier la convergence des intégrales suivantes (comparaison)

$$I = \int_{1}^{+\infty} \frac{dt}{2t + \sqrt[3]{t^2 + 1} + 5}, \quad J = \int_{0}^{\infty} \frac{\sin t}{1 + t^2} dt$$

$$K = \int_{1}^{2} \frac{t^{2} - 3t + 2}{(2 - t)^{\alpha} (1 - t)^{3/2}}$$

- 3) a) Calculer à l'aide d'une intégration par parties l'intégrale $\int_x^1 t^\alpha \ln t dt$ b) En déduire la nature de $I = \int_0^1 t^\alpha \ln t$ pour $\alpha \in \mathbb{R}$ et sa valeur dans le cas de convergence. c) Effectuer le changement de variables $u = \frac{1}{t}$ pour transformer $\int_1^x \frac{\ln t}{t^\alpha} dt$
- d) En déduire la nature de $J=\int_1^{+\infty} \frac{\ln t}{t^{\alpha}} dt$ pour $\alpha \in \mathbb{R}$ et sa valeur dans le cas de coonvergence.
- e) Déterminer la nature de $K = \int_2^{+\infty} \frac{1}{(t^2-1)^2} dt$ Trouver α , β , γ δ tels que

$$\frac{1}{(t^2-1)^2} = \frac{\alpha}{(t^2-1)^2} + \frac{\beta}{t-1} + \frac{\gamma}{(t+1)^2} + \frac{\gamma}{t+1}$$

Calculer K.

4) Etudier les intégrales suivantes

$$I_1 = \int_0^{+\infty} \frac{\cos t}{t^{\alpha}} dt, \ I_2 = \int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$$